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Abstract—Recently, graph neural networks (GNNs) have shown
prominent performance in semi-supervised node classification by
leveraging knowledge from the graph database. However, most
existing GNNs follow the homophily assumption, where connected
nodes are more likely to exhibit similar feature distributions
and the same labels, and such an assumption has proven to be
vulnerable in a growing number of practical applications. As a
supplement, heterophily reflects dissimilarity in connected nodes,
which has gained significant attention in graph learning. To this
end, data engineers aim to develop a powerful GNN model that
can ensure performance under both homophily and heterophily.
Despite numerous attempts, most existing GNNs struggle to
achieve optimal node representations due to the constraints of
undirected graphs. The neglect of directed edges results in sub-
optimal graph representations, thereby hindering the capacity
of GNNs. To address this issue, we introduce AMUD, which
quantifies the relationship between node profiles and topology from
a statistical perspective, offering valuable insights for Adaptively
Modeling the natural directed graphs as the Undirected or
Directed graph to maximize the benefits from subsequent graph
learning. Furthermore, we propose Adaptive Directed Pattern
Aggregation (ADPA) as a new directed graph learning paradigm
for AMUD. Empirical studies have demonstrated that AMUD
guides efficient graph learning. Meanwhile, extensive experiments
on 16 benchmark datasets substantiate the impressive performance
of ADPA, outperforming baselines by significant margins of 3.96%.

Index Terms—Graph Representation Learning, Directed Graph
Neural Networks, Structural Heterophily

I. INTRODUCTION

Graph neural networks (GNNs) have garnered considerable
attention within the data engineering community [1]–[3]. The
prevalent usage of structured data in wide-ranging applications,
such as recommendation [4]–[6], bioinformatics [7]–[9], and
anomaly detection [10]–[12] attests to its importance. Further-
more, GNNs have achieved state-of-the-art performance in
the semi-supervised node classification paradigm [13]–[15],
credited to their intuitive exploitation of the knowledge from
node profiles and topology stored in databases [16]–[18].

Reflecting on the evolution of GNNs, in their early stages,
researchers rely on the homophily assumption [19]–[21], where
connected nodes are more likely to possess similar features
and the same labels. This empirical assumption, commonly
observed in real-world applications [22]–[24], guides principles
for designing GNNs. During this period, the well-known
message-passing emerged [25]–[27], giving rise to numerous
simple yet effective methods that continue to be widely applied.

‡: These authors contributed equally to this work.

However, as GNNs become increasingly deployed in the
intricate applications [28]–[30] and researchers demand more
powerful representations (i.e. for higher accuracy and robust-
ness), heterophily, the opposite of homophily, has gradually
come into focus. To this end, data engineers have explored
optimal node representations from both the spectral [31]–[33]
and spatial perspectives [34]–[36] with the aim of developing
a GNN capable of delivering strong performance under both
homophily and heterophily. Despite their effectiveness, it’s
essential to note that all the aforementioned GNNs have been
designed exclusively for undirected scenarios. Therefore, the
following limitations hinder the progress of graph learning.

L1: Irreversible loss of graph representation. From the
perspective of graph representation, the neglect of directed
edges results in information loss within the natural graphs,
which constrains the capacity of GNNs to capture and express
relational information for predictions. In contrast, directed
graphs (digraphs) are better suited for modeling complex topol-
ogy, given their ability to capture intricate relationships between
nodes. We notice that recent Dir-GNN [37] and A2DUG [38]
have acknowledged this limitation and attempted to improve
performance through directed modeling. Unfortunately, they
lack a comprehensive discussion of topological characteristics
(i.e., homophily and heterophily) and directed information. In
other words, there is room for improvement in their model
architectures that lack the capture of directed topology.

L2: Ambiguous graph-based data engineering. In our
investigation of existing undirected/directed GNNs, we found
that their approach to datasets is ambiguous. Specifically, since
real-world graphs naturally exhibit directed edges, undirected
GNNs coarsely transform directed edges into undirected ones
to guarantee predictive performance. Moreover, some directed
GNNs might perform undirected transformations on digraphs
for edge-wise data augmentation. In this context, we have the
following observations: (O1) For some datasets, undirected
GNNs based on coarse undirected transformations outperform
directed GNNs based on natural digraphs. But for others, the
situation is quite the opposite. (O2) For directed GNNs, the
effectiveness of undirected edge-wise data augmentation is un-
certain. We attribute this to the entanglement of homophily and
heterophily concealed beneath directed edges, which hinders
graph data engineering within the narrow scope of undirected
scenarios, highlighting the need for further investigating the
inherent connection between nodes and topology.
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To address the above limitations, we propose AMUD, which
employs a statistical perspective to quantify the correlation
between node profiles and topology. It determines whether to
retain the inherent directed edges in the original data, with the
aim of maximizing the benefits for the subsequent training.
After that, we suggest utilizing the undirected and directed
GNNs to handle the undirected and directed output of AMUD,
respectively, as methods specifically designed for undirected
graphs exhibit performance advantages compared to directed
GNNs. In comparison, our proposed ADPA discovers suitable
directed patterns (DPs) and utilizes two hierarchical attention
mechanisms to achieve multi-scale message aggregation, which
applies to the both undirected and directed output of AMUD.

Our contributions. (1) New Perspective. To the best of our
knowledge, this paper is the first to investigate the comprehen-
sive impact of directed topology in homophily and heterophily
on the semi-supervised node classification paradigm, providing
valuable empirical analysis for graph-based data engineering.
(2) New Data Engineering Framework. We introduce AMUD,
which offers modeling guidance for natural digraphs from a
statistical perspective, maximizing the benefits for subsequent
graph learning. (3) New Digraph Learning Paradigm. We pro-
pose ADPA, which adaptively discovers the personalized DPs of
each node by two hierarchical node-wise attention mechanisms,
achieving effective message aggregation. This new paradigm
introduces valuable insights for the future of digraph learning.
(4) SOTA Performance. AMUD achieves a 4.57% performance
boost compared to ambiguous data engineering. Meanwhile,
ADPA outperforms the most competitive baseline, achieving
an average improvement of 4.16% on directed modeling.

II. PRELIMINARIES

A. Notation and Problem Formalization

Notation. We consider a general graph representation method
G = (V, E) with |V| = n nodes and |E| = m edges. The
adjacency matrix (including self-loops) for the undirected
graph is Âu ∈ Rn×n and the directed variant of Âu can
be described by an asymmetrical matrix Âd(u, v), u, v ∈ V .
Âd(u, v) = 1 if (u, v) ∈ E and Ad(u, v) = 0 otherwise.
For both undirected and directed scenarios, the node feature
matrix is X = {x1, . . . , xn}, where xv ∈ Rf represents the
feature vector of node v. Besides, Y is the label matrix. The
semi-supervised node classification paradigm is based on the
topology of labeled set VL and unlabeled set VU , and the nodes
in VU are predicted based on the model supervised by VL.
Problem Formalization with Our Proposal. To achieve
effective graph learning, we propose AMUD to guide the
topological modeling of newly collected digraphs. Subse-
quently, we can feed the undirected/directed output of AMUD
(AMUndirected/AMDirected) into existing methods as shown
in Fig. 1. The motivation for this design is discussed in
Sec. V-B. Although undirected GNNs have been extensively
researched, the optimal learning paradigm for digraphs still
lacks exploration. Therefore, we propose ADPA specifically
for AMDirected, which is also a feasible choice to be applied
to AMUndirected thanks to its powerful capabilities.

AMUD Framework

AMUndirected AMDirected

𝐀𝒖, 𝐗, 𝐘 𝐀𝒅, 𝐗, 𝐘

Newly Collected
Natural Digraph

Undir
GNN

Predictions

Dir
GNN

Predictions

(a) Graph Data Engineering (b) Paradigm I (c) Paradigm II 

Fig. 1: Workflow with our proposal. Paradigm I/II represents the
dichotomy of the learning process determined by the output of AMUD.

B. Undirected Graph Neural Networks

Homophilous Methods. Drawing inspiration from the spectral
graph theory [39] and deep architectures, the most popular
GCN [40] is proposed, which can be viewed as a learnable
first-order message aggregation. From the perspective of design
principles, this method aligns with the prominent homophily
assumption [22]–[24], which finds an analog in the concept
of smoothness or clustering assumption [41] in the context
of semi-supervised node classification. Notably, the consistent
and strong performance of label propagation observed across
various datasets provides empirical support for enabling this
iterative positive propagation of node features to neighbors
during prediction. Formally, the l-th layer in GCN is

X(l)=σ(ÃX(l−1)W(l)), Ã=D̂r−1ÂD̂−r, r ∈ [0, 1], (1)

where D̂ is the degree matrix of Â, r is the convolution
coefficient, W is the trainable weights, and σ(·) is the non-
linear activation function. By selecting appropriate r, we obtain
the random walk-based ÂD̂−1 [42], symmetric normalized
D̂−1/2ÂD̂−1/2, and the reverse transition-based D̂−1Â [43].
By utilizing them, recent studies [13], [14], [44]–[46] optimize
the model architectures to improve performance.
Heterophilous Methods. Despite homophilous GNNs’ effec-

tiveness, recent surveys [28]–[30] reveal the limitations of di-
rectly deploying these methods. Specifically, naive homophilous
propagation can be viewed as feature augmentation. However,
heterophily misleads this process and disturbs the node rep-
resentations. Recent approaches aim to capture heterophily
by incorporating high-order neighbors or multi-scale mes-
sages [47]–[49]. H2GCN introduces neighbor rules, such as Ã1

and Ã2, to obtain Z=Combine (Agg(Ã1,X),Agg(Ã2,X)).
GPR-GNN [50] controls the contribution of propagated features
in each step by learnable PageRank weights Z =

∑K
k=0 γkX

(k).
LINKX [51] separately encodes node features and topology,
avoiding negative impacts caused by misleading interactions
Z = Concat(MLP(X),MLP(A)). GloGNN [34] further
utilizes global transformation probability matrix T to generates
a node’s global embedding Z = (1 − γ)T(l)X(l) + γX(l).
Inspired by them, several recent approaches [52]–[56] further
improve predictive performance through well-designed model
architectures and optimized aggregation strategies.



Homophily Measures. Despite the considerable efforts of
homophilous or heterophilous GNNs, quantifying topological
homophily remains a challenge [57]–[59]. The widely used
metrics are node homophily Hnode [52] and edge homophily
Hedge [60], which compute the proportion of edge-connected
nodes and nodes’ neighbors that share the same class, re-
spectively. These measures are straightforward and intuitive.
However, they exhibit sensitivity to the label distributions,
which hinders their reliability. In response to these limitations,
Hclass [51], Hadj [61], and LI [62] are proposed. Despite
theoretical analysis indicates that these metrics exhibit stronger
robustness, they are still constrained by the representation
challenge posed by the sub-optimal undirected topology.

C. Directed Graph Neural Networks

Spatial-based Methods. To obtain node embeddings in di-
graphs with asymmetrical topology Ad, spatial-based methods
follow the message-passing mechanism in undirected scenarios.
However, it’s crucial to consider the directed edges when
aggregating messages Agg(·). Thus, current node i ∈ V adopts
independent learnable weights over out-neighbors (i→ j) and
in-neighbors (j → i) to combine representation Com(·).

H
(l)
i,→ = Agg

(
X

(l−1)
i ,X

(l−1)
j , {∀(i, j) ∈ E}

)
,

H
(l)
i,← = Agg

(
X

(l−1)
i ,X

(l−1)
j , {∀(j, i) ∈ E}

)
,

X
(l)
i = Com

(
X

(l−1)
i ,H

(l)
i,←,H

(l)
i,→

)
.

(2)

Building upon this foundation, DGCN [63] introduces first and
second-order neighbor proximity to devise message aggregation
strategies. DIMPA [64] increases the receptive field of nodes
by aggregating K-hop neighborhoods at each layer. NSTE [65]
is inspired by the 1-WL graph isomorphism test, tuning
based on the directed propagation. DiGCN [66] leverages
the neighbor proximity to increase the receptive field and
theoretically extends personalized PageRank to construct a
real symmetric digraph Laplacian. This method advances in
extending undirected spectral convolution to digraph scenarios.
Spectral-based Methods. To implement spectral convolution
on digraphs with theoretical guarantees, the core is to obtain a
symmetric (conjugated) digraph Laplacian Ld based on Ad.

Ld = DGS(Ad, α, q),

Ŷ =MLP (Poly (Ld)MLP (X)) ,
(3)

where DGS(·) is the digraph generalized symmetric function
with parameters and Ŷ being the predictions. Building upon
this, DiGCN [66] introduces the α-parameterized stable state
distribution based on the personalized PageRank to achieve
digraph convolution. MagNet [67] utilizes q-parameterized
complex Hermitian matrix (magnetic Laplacian) to define
convolution with independent trainable weights for the real and
image parts. MGC [68] adopts a truncated variant of PageRank
on magnetic Laplacian for fine-grained filtering. Furthermore,
Poly(·) is a polynomial-based approximation method, such
as the Linear-Rank [69] adopted in MGC and the first-order
Chebyshev polynomial employed in MagNet and DiGCN.

III. AMUD: GRAPH-BASED DATA ENGINEERING

A. Empirical Analysis

To illustrate the two empirical observations introduced in
Sec. I, we provide an intuitive description on the left side
of Fig. 2 and corresponding experimental results on the right
side. This demonstrates our concerns regarding the ambiguous
integration of graph-based data engineering and graph learning
process and provides ample support for our following claims.

To answer (O1), we provide experimental results as shown
in Fig. 2(a) and (b). We can observe that feeding the naturally
directed CoraML into undirected GNNs after coarse undirected
transformation results in better predictive performance com-
pared to directly feeding it into directed GNNs. However, this
phenomenon is entirely the opposite for the Chameleon dataset.
To investigate the reasons behind this occurrence from the
perspective of topology, we quantify the homophily using the
metrics introduced in Sec. II-B, as shown in Table I. To explain
it, we propose Proposition 1, which aligns with our results
and further investigates this issue by Question 1. Notably, the
conclusion regarding undirected graphs with homophily has
been confirmed in recent related works [70], but the relationship
between digraphs and topological properties lacks investigation.

Proposition 1. Undirected GNNs are more suitable for handling
homophilous undirected graphs, while directed GNNs exhibit a
significant advantage in dealing with heterophilous digraphs.

Question 1. What does modeling directed information mean
for directed GNNs, and whether it aid in capturing homophily
or heterophily during the graph learning process?

To further answer Question 1 and explore the reasons behind
(O2), we present experimental results in Fig. 2(c) and (d). It
is evident that, for directed GNNs, undirected augmentation
(i.e., directly converting directed edges into undirected edges)
on CiteSeer leads to a significant performance boost, while it
has a negative impact on Squirrel. Considering the statistical
information in Table I, we propose Proposition 2. This indicates
that directed information provides us with a new perspective
to dissect the entanglement of homophily and heterophily in
the conventional undirected graph learning process.

Proposition 2. Modeling directed information assists directed
GNNs in capturing intricate heterophily while discarding
directed information is more crucial for utilizing homophily.

It is well-known that in recent years, numerous metrics for
quantifying homophily have been proposed. A natural idea is
to directly employ these metrics to determine whether to model
directed topology. However, existing homophilous measures
ignore directed information, making them sub-optimal choices
in digraph scenarios. To address this issue, we propose a
unified data engineering framework, AMUD, from a statistical
perspective. It represents the correlation between homophily
and directed edges through linear regression and calculates
the coefficient of determination (R2) to guide the modeling
rules for newly collected digraphs, maximizing the benefits in
subsequent undirected or directed graph learning processes.



(b) Chameleon(a) CoraML (c) CiteSeer (d) Squirrel

Natural 
Digraph Directed Dir GNN

Dir GNN

Dir GNN

Directed

Undirected Augmentation

O1

O2

Undir GNNUndirected

AMD

Fig. 2: The two observations mentioned in Sec. I L2. AMD is the directed output of AMUD. CoraML, Chameleon, CiteSeer, and Squirrel are
four natural digraphs, where Chameleon and Squirrel are filter versions in [61]. GCN, GRP-GNN, and AEROGNN are three undirected
GNNs. DiGCN, NSTE, and DirGNN are three directed GNNs. U- and D- represent the input of undirected and directed graphs.

TABLE I: Homophily from naturally directed to coarse undirected
transformation and our proposed AMUD for the directed scenario.

Datasets Hnode Hedge Hclass Hadj LI AMUD
CoraML .792-.789 .808-.810 .744-.740 .784-.780 .567-.561 0.380

Chameleon .245-.236 .247-.244 .058-.044 .203-.193 .027-.014 0.657
CiteSeer .739-.738 .725-.720 .627-.629 .726-.724 .475-.454 0.269
Squirrel .216-.207 .185-.191 .067-.040 .173-.165 -.014-.001 0.693
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Fig. 3: A toy example for our proposed AMUD.

B. AMUD Formalization

As discussed in Sec. I and Sec. III-A, the entanglement of
homophily and heterophily is concealed beneath the directed
edges. To validate our claims, we present relevant statistics
in Table I, including the homophily (CoraML and CiteSeer)
and heterophily (Chameleon and Squirrel) which has been
generally recognized by previous studies [61], [62]. Building
upon this, we aim to highlight the advantages of AMUD
over other metrics. According to Table I, we observe that
existing metrics exhibit inefficiency when confronted with
directed topologies. Specifically, they fail to distinctly reveal
differences in the same dataset under directed and undirected
scenarios. For instance, the disparities in the undirected and
directed versions of homophilous CoraML and CiteSeer under
Hedge and Hadj are nearly negligible. Meanwhile, for the
heterophilous Chameleon and Squirrel, the differences only
remain modest, e.g., .245 to .236 and .173 to .165, respectively.

To address this issue, we propose AMUD tailored for directed
scenarios, which establishes a statistical connection between
nodes and directed edges to guide graph-based data engineering.
A toy example is shown in Fig. 3. To begin with, we emphasize
the importance of directed topology in preserving intricate
relationships, highlighting the information loss caused by coarse
undirected transformation. For Node 1, Node 2 and Node 3
share the same node class assisted by the same relationship in
the out-neighbor (→Node 4) and in-neighbor (←Node 5) of

Node 1. However, Node 6 and Node 7 have different classes
caused by the different relationship in the neighbors of Node 1
(i.e., →,←Node 4 and ←,→Node 5). This critical topological
information is lost when simply transforming digraphs into
undirected ones, which results in Node 1 integrating all of its
2-hop neighbors, entangling the homophily and heterophily.

For fine-grained quantification of topological characterizes
(i.e., homophily and heterophily) concealed beneath directed
edges, we present the derivation and computation details of
AMUD from a statistical perspective. It is worth noting that,
for simplicity, we utilize Gd to represent different high-order
neighbors, such as 1-hop neighbors, 2-hop neighbors, and so on.
That is, for any u, v ∈ V , Gd(u, v) = 1 if u, v are high-order
neighbors (maybe not directly connected) and Gd(u, v) = 0
otherwise. Building upon this, we have the topology Gd and
node profiles N (e.g., features or labels) of a given digraph.
Let a random variable Gd be the multi-scale relationships of
the randomly picked directed topology in Ad. The distribution
of Gd is P(Gd(u, v)) = P(Gd(u, v) = Gd(Vd, Ed)), where
Gd(Vd, Ed) is the outcome digraph when we pick multi-scale
relationships Gd. Similarly, let a random variable N be a node
profile associated with the randomly picked comprehensive
description in V(X,Y), the distribution of N is P (N(u)) =
P(N(u) = Vu(xu, yu)), where Vu(xu, yu) is the outcome
description when we pick node u’s node profile N(u).

P (Gd(u, v)) =
1Gd(u,v)=k,k∈{0,1}(

n
2

) ,

P (N(u)) =
1N(u)=N,N∈RN

n
,

(4)

where 1Gd(u,v)=k,k∈{0,1} and 1N(u)=N,N∈RN represent the
numbers of elements that equal to k ∈ {0, 1} and N ∈ RN,
respectively. Then, we calculate the expectations of them.

E(Gd) =
∑

u,v∈V
Gd(u, v)×P(Gd(u, v)),

E(N) =
∑
u∈V

N(u)×P(N(u)).
(5)

After that, we calculate the covariance between directed
topology Gd and node description N to quantify the relevance
between multi-scale relationships and node profiles.

Cov(Gd,N) = E((Gd − E(Gd))× (N− E(N)))
= E(GdN)− E(Gd)E(N).

(6)



Based on the above equations, we calculate the Pearson
correlation coefficient r(Gd,N) of digraph operator Gd and
attribute matrix N, which formally defined as follows:

Cov(Gd,N)√∑
u,v∈V(Gd(u, v)−Gd)2

√∑
u∈V(N(u)− N)2

, (7)

where Gd and N are the mean value Gd and N. Notably, for a
linear model of Gd and N, the square of r(Gd,N) is denoted
as R2(Gd,N). This metric signifies that a coefficient closer to 1
implies a stronger linear relation between directed relationships
and node profiles. The criteria for deciding whether to perform
directed modeling are introduced subsequently.

C. Directed Modeling Guidance

Based on the above definition, R2(Gd,N) can be extended
by considering higher-order relationships Gd and more compre-
hensive node descriptions N. However, in our implementation,
we quantify the correlations between 2-hop neighbors and node
labels for enhancing efficiency. Notably, this strategy is enough
to capture abundant semantic information akin to compact
motifs in complex networks, recognized as powerful tools
in graph mining [71]–[73]. For instance, AdA

T
d and AT

d Ad

provide more abundant homophily than other 2-order DPs,
which implies that these 2-hop neighbors are more likely to
share similar features and the same labels with the current node.
In contrast, AdAd and AT

d A
T
d provide support for modeling

intricate heterophilous relationships. This key insight prompts
us to reveal topological relationships concealed within directed
edges by measuring the correlation between Gd and N.

Specifically, if the disparity in correlations between DPs and
node profiles exceeds the threshold, it indicates the necessity of
retaining directed topology to reveal intricate relationships. Oth-
erwise, undirected transformation is recommended. Formally,
we define the guidance score S by

S=α

√ ∑
Gdi,Gdj ,Gdi ̸=Gdj

∥∥R2(Gdi,N)−R2(Gdj ,N)
∥∥
2
/

(
4

2

)
.

(8)
Given the sparsity of real-world digraphs, R2(Gd,N) tends
to be a small value. To address this, we introduce a scalar
operator α = 1/max

(
R2(Gd,N)

)
. In our implementation, if

S > θ = 0.5, we should retain its directed edges. Otherwise,
it is recommended to model it into an undirected graph.

IV. ADAPTIVE DIRECTED PATTERN AGGREGATION

Building upon the directed topological modeling guidance,
as illustrated in Fig. 1, we suggest that feeding AMUndirected
into existing state-of-the-art undirected GNNs. This is because,
in contrast to directed GNNs, these methods focus exclusively
on undirected inputs and exhibit performance advantages
due to well-designed propagation strategies. Moreover, many
powerful undirected GNNs have been proposed in recent
years, showcasing sufficient capacity to handle such undirected
scenarios. In contrast, a consensus on the optimal digraph
learning paradigm for AMDirected is yet to be established.

To address this issue, we propose ADPA shown in Fig. 4. In
this section, we commence by introducing the key intuitions
of our proposal in Sec. IV-A. Subsequently, in Sec. IV-B
and Sec. IV-C, we elaborate on the details of ADPA, which
utilizes adaptive exploration of diverse DPs to extract multi-
scale directed information and incorporates two hierarchical
node-adaptive attention mechanisms to facilitate the integra-
tion of multi-granularity fusion representations. Meanwhile,
we provide the algorithm complexity analysis of ADPA in
Sec. IV-D. Notably, serving as a new digraph learning paradigm,
ADPA provides a unified framework for existing methods that
adhere to the message-passing framework. Based on this, we
illustrate that most of the existing spatial-based approaches
can be considered a specific instance of ADPA in Sec. IV-E.
To provide a comprehensive understanding of our proposed
workflow, we present detailed illustrations in Alg. 1.

A. Architecture Overview

According to the analysis in Sec. I and Sec. III, we observe
that the directed topology introduces intricate relationships
among nodes in the digraph. This complexity is beyond the
commonly acknowledged one-hop neighbor relationships in
undirected scenarios, evolving into the exploration of complex
topological co-occurrences in higher-order neighbors. Moreover,
label-guided homophily and heterophily also play a significant
role in this scenario. Therefore, we aim to propose a unified
framework that can effectively handle directed topology while
breaking the entanglement of homophily and heterophily in the
semi-supervised node classification paradigm. The following
content elucidates the intuition of our proposed ADPA.

Directed Pattern Guided Feature Propagation. As depicted
in Table I and Fig. 3, the intricate homophily and heterophily
in directed scenarios significantly differ from the undirected
ones. In digraphs, the co-occurrence patterns in the topological
structure, enriched by the fusion of directed information,
contain substantial yet undiscovered knowledge. To capture
this intricate multi-scale structural insights of each node from
both local and global perspectives, we extract various DPs
into instantiated matrices to guide directed K-step feature
propagation. Notably, to ensure computational efficiency, we
discarded the tightly coupled frameworks in graph learning.
Instead, we introduce a weight-free feature propagation module
independent of the training. Similar design principles have
been proven to significantly enhance computational efficiency
without compromising predictive performance [15], [74]–[77].

Node-adaptive Attention Mechanisms. After obtaining node
representations that consider multi-scale structural information,
a natural question arises: Whether the diverse DP-guided node
representations and the propagated features at each step will
collectively contribute positively to the final prediction? Based
on the conclusions drawn in Sec. III and relevant studies
about graph propagation [45], [50], [78], different DPs and
propagation steps have diverse impacts on various datasets,
leading to distinct influences on individual nodes. Therefore,
we propose two hierarchical node-wise attention mechanisms
to finely fusion multi-granularity node representations.
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Fig. 4: Overview of our proposed ADPA, including (a) discover DPs and achieve multi-scale directed feature propagation; (b) combine the
K-step propagated features within k-order DPs to obtain multi-granularity node representations by node-adaptive attention.

A New Digraph Learning Paradigm. Notably, our proposed
ADPA essentially serves as an instantiation of a unified
framework for digraph learning. We strive for ADPA to offer
essential insights for subsequent studies based on message-
passing, particularly focusing on the spatial domain propagation
perspective. Specifically, ADPA can benefit from advancements
in well-designed feature propagation strategies (e.g., initial
residuals and dense connection) to obtain a more powerful
multi-scale structural representation. Meanwhile, researchers
have the flexibility to replace attention components within the
node-adaptive multi-granularity representation fusion with other
reasonable approaches (e.g., gate attention and self-attention),
enabling customization based on specific requirements.

B. Directed Patterns Guided Feature Propagation

As illustrated in Sec. III-C, different DP operators provide
different structural insights for various semantic information
(e.g., intricate homophily and heterophily in digraphs). This
key insight motivates us to propose the various DPs to capture
multi-scale structural information, facilitating information
interaction between higher-order nodes by directed feature
propagation. Specifically, given the directed topology Ad and
node feature matrix X, ADPA first generates k-order DPs
to propagate the current node features to their multi-directed
high-order neighbors. Formally, we extend Eq. (2) by letting
Gd =

{
Ad,A

T
d ,AdAd,A

T
d A

T
d , · · ·

}
be the DP operators of

length k (Ad = Au in the undirected scenario), then the
K-step parameter-free feature propagation is defined as

X̃=
[
X̃(1), . . . , X̃(K)

]
, X̃(l)=

[
X(0),X

(l)
Gd1

, . . . ,X
(l)
Gdk

]
,

X
(l)
Gdg

= Gdg
X

(l−1)
Gdg

,∀g = 1, . . . , k, ∀l = 1, . . . ,K,

X
(l)
i,Gdg

= Agg
(
X

(l−1)
i,Gdg

,X
(l−1)
j,Gdg

, {∀i, j,Gdg
(i, j)=1}

)
,

(9)

where X(0) = X, this initial residual has been demonstrated
to be theoretically effective in recent studies [14], [79], from
both spatial and spectral perspectives. Intuitively, this strategy
can emphasize the unique attributes of each node during the
feature propagation process, thereby alleviating the notorious
over-smoothing issues and improving predictive performance.

In our general implementation of Eq. (9), the selection of
k follows specific rules. When considering only the 1-hop
neighborhood, k is set to 2. This is because, based on the
in-degree and out-degree, there only exist two propagation
operators Ad and AT

d . As for the case of a 2-hop neighborhood,
k is set to 6. This is due to the introduction of complex
connection patterns arising from directed topology, resulting in
four additional propagation operators, as illustrated in Fig. 4
(i.e.,

(
AdAd,A

T
d A

T
d ,AdA

T
d ,A

T
d Ad

)
). Expanding on this

concept, the consideration of an N -hop neighborhood implies
that k = 21 + · · · + 2N . While the computational expenses
associated with considering higher-order neighborhoods exhibit
exponential growth, we can alleviate the reliance on larger
values of k by strategically choosing the number of propagation
steps. This stems from a pivotal insight obtained during
our investigation: In directed topology, significant connection
patterns often emerge in second-order operators, the higher-
order operators with specific second-order terms is equal
importance. Consequently, we can opt for a smaller value of k
and depend on a larger K to reveal higher-order dependencies
for the current node by well-designed propagation. It is worth
noting that, thanks to training-independent sparse-dense matrix
multiplication (i.e., Gd and X), the feature propagation process
experiences a notable acceleration, resulting in a substantial
reduction in computation complexity. Meanwhile, in reality,
feature transformation can be performed with significantly less
cost due to better parallelism of sparse matrix multiplications.



In addition to the aforementioned key insights on reducing
computation complexity, we further recommend a careful
selection of suitable DP operators using Eq. (7) to improve
running efficiency. Specifically, under the assumption of known
labels for part of nodes, this equation quantifies the correla-
tion between a specific propagation rule and node profiles.
Subsequently, we recommend selecting Gd with a higher
value of r(Gd,N) to construct DPs. This is because a larger
and positive value of r(Gd,N) reveals a strong correlation
between the current propagation rule Gd and the distribution
of node profiles. This guides fine-grained feature propagation,
encompassing diverse connection patterns (i.e., homophily and
heterophily). In other words, we do not confine the feature
propagation process to homophilous or heterophilous node
pairs. Instead, we globally discover systematic connection rules
and emphasize this through the DP operator. For instance, in
Fig.3, AdA

T
d and AT

d Ad capture homophily among Node1,
Node2, and Node3 under the consideration of directed topology.
However, the heterophilous edges revealed by AdAd and
AT

d A
T
d lack clear rules (Node 7→ Node 1, Node 5→ Node 4,

and Node 1 → Node 6), resulting in relatively small negative
values. In contrast, if heterophilous connections exhibit explicit
associations, this will manifest as larger positive values (e.g.,
AdAd and AT

d A
T
d reflects blue → green).

C. Node-adaptive Attention Mechanisms

After K-step feature propagation in Eq. (9), we get a list
of propagated features under different steps

[
X̃(1), . . . , X̃(K)

]
,

which contains DP-guided multi-scale structural encoding
X̃(l) ∈ Rn×(k+1)f and propagation-guided multi-granularity
node representations X̃ ∈ Rn×K(k+1)f . These messages
comprehensively capture node interaction under the influence
of directed topology. However, not all messages contribute to
label prediction, especially when considering more granular
details at the node level. In other words, due to distinct graph
contexts associated with different nodes, the required structural
encoding varies for each node. To address this issue, we propose
the following two hierarchical attention mechanisms to achieve
end-to-end node-adaptive representation fusion.
Node-wise DP Attention. Since k-order DP operators con-
tribute diverse types of directed information flows to the current
node, our objective is to dynamically aggregate the aforemen-
tioned multi-scale structural encoding and the initial residual
efficiently using the learnable weights WDP ∈ Rn×(k+1)

in the node-wise DP attention. In other words, in the first
level of two hierarchical node-wise attention, we focus on the
contributions of different DP operators at each propagation
step. Formally, the above process is defined as

X
(l)

i = MLP
(
Wi,1

DPX
(0)
i ∥W

i,2
DPX

(l)
i,Gd1
∥· · · ∥Wi,k+1

DP X
(l)
i,Gdk

)
,

(10)
where MLP := Rn×(k+1)f → Rn×f represents the node-
adaptive multi-scale representation fusion function and ·||·
denotes the feature concatenation. Now, we have obtained
X

(l) ∈ Rn×f , representing the adaptively acquired node repre-

Algorithm 1 Our Proposal’s AMUD and ADPA Workflow

1: AMUD Topological Modeling Guidance:
2: Generating k-order DP operators Gd from Ad;
3: Quantifying the coefficient of node profiles and directed

topology according to the Eq. (7);
4: Calculating AMUD score S according to Eq. (8);
5: if S < θ then
6: Au = Undirected Transformation (Ad);
7: else
8: Ad = Ad;
9: end if

10: ADPA Forward Propagation Running Pipeline :
11: for each node i = 1, · · · , n do
12: Each node propagates its message according to Eq. (9);
13: Each node aggregates k-order multi-scale structural

encoding messages according to Eq. (10);
14: Each node aggregates K-hop multi-granularity node

representation messages according to Eq. (11);
15: Each node executes forward propagation by MLP and

current fusion representation to predict node label Ŷi;
16: end for

sentation at each propagation step. Subsequently, considering a
K-step propagation process, we obtain the corresponding list
X̃ =

[
X

(1)
, . . . ,X

(K)
]

of length K. It is worth noting that
the attention mechanism utilized in Eq. (10) can be substituted
with any other reasonable attention mechanisms for altering
the methods of feature aggregation in the MLP, such as Gate
attention [80], recursive attention [15], and JK attention [42].
To further explore the impact of the aforementioned different
attention mechanisms in our implementation, we conduct a
series of ablation experiments in Sec. V-D.
Node-wise Hop Attention. As we all know, in the graph
learning process based on message-passing, each node grad-
ually receives information from its low-order and high-order
neighbors. We refer to this collection of neighborhood nodes
as the receptive field of the current node. Recent research [35],
[75], [76], [78], [81] have emphasized that the most appropriate
receptive field for each node varies due to the intricate
contextual information inherent within the graph. Notably, this
is particularly crucial for digraphs, where high-order topological
structure often entails valuable cues for predictions. Moreover,
distinct differences exist among various high-order structures,
as analyzed in Sec. III. Inspired by these key insights and
empirical studies, we advocate explicitly learning the impor-
tance and relevance of multi-granularity knowledge in a node-
adaptive manner. To this end, we introduce the second level of
two hierarchical node-adaptive attention, which automatically
leverages knowledge from different neighborhoods guided by
various DP to boost performance.

X⋆
i =

K∑
l=1

W
(l)
hopX

(l)

i , W
(l)
hop = eδ(E

(l)
i )/

K∑
k=1

eδ(E
(k)
i ),

E
(l)
i = MLP

(
X

(1)

i ||X
(2)

i || · · · ||X
(K−1)
i ||X(K)

i

)
,

(11)



where δ is the non-linear activate function, W(l)
hop and E

(l)
i

are used for computing the node-wise attention weights. This
hop attention mechanism is designed to construct a person-
alized multi-granularity representation fusion for each node,
facilitating the learning of message aggregation weights by the
attention mechanism. These learned weights are subsequently
input into the attention-based combination branch, generating
a refined attention feature representation for each node. As the
training progresses, the attention-based combination branch
gradually accentuates the importance of neighborhood regions
that contribute more significantly to the target nodes.

D. Complexity Analysis

In this section, we present an algorithm complexity analysis
of ADPA to illustrate how the decoupled model architecture pro-
vides users with a computation-friendly paradigm. Specifically,
let n,m, and f be the number of nodes, edges, and feature
dimensions. k and K correspond to the number of k-order DP
operators and the propagation steps. L refers to the number
of layers in the MLP classifier. Since ADPA utilizes k-order
DP in the feature propagation, the overall time complexity is
O(kKmf). Notably, this process is independent of the training
phase and can be pre-processed and cached in local memory.
As a result, the time and space complexity during the training is
negligible. Furthermore, the time complexity of MLP training
is O(kLnf2), due to the fact that each feature generated from
k-order DP operators is fed into the MLP of layer L. The
space complexity of ADPA is composed of features in the
feature propagation and the neural network during training.
Thus, the overall space complexity of ADPA is O(kf +kLf2).
Notably, feature transformation O(Lnf2) can be performed
with significantly less cost due to better parallelism of dense-
dense matrix multiplications.

E. A Unified Paradigm for Spatial-based Directed GNNs

In a nutshell, ADPA comprises two pivotal modules: directed
patterns guided feature propagation (see Sec. IV-B) and two hi-
erarchical node-adaptive attention mechanisms (see Sec. IV-C),
which constitute a general paradigm for spatial-based directed
GNNs. Specifically, we propose that adhering to the spatial
domain message-passing digraph learning paradigm should
involve the following two steps: Step 1: Define appropriate
DP operators to perform fine-grained feature propagation,
uncovering genuine patterns within intricate topologies. Step 2:
Achieve end-to-end training through carefully designed message
aggregation functions. Building upon this conception, we will
elaborate on the comparison between ADPA and existing
spatial-based directed GNNs.
(1) DGCN [63] and Dir-GNN [37] limit their consideration
to incomplete 2-order DPs and employ outdated learnable
message aggregation mechanisms, which can be regarded as a
special case of hop attention. Notably, Sec. III demonstrates
that other DPs also provide valuable structural insights. In light
of this, ADPA extends DP operators when propagating node
features and achieves multi-granularity message fusion by two
hierarchical node-adaptive attention mechanisms.

(2) A2DUG [38] solely focuses on the undirected versions of
propagation operators, obscuring the homophily and heterophily
inherent in directed edges. As discussed in Sec. III-C, there
exist significant semantic distinctions among DPs of the same
order. Converting directed edges into undirected ones also
overlooks such crucial topological information. Consequently,
ADPA incorporates various directed graph patterns of the same
orders, thereby enhancing the model’s performance.
(3) NSTE [65] and DIMPA [64] adhere to a tightly coupled
model architecture, utilizing two sets of weights to encode
the in- and out-degree edges. Simultaneously, they expand the
receptive field between model layers, resulting in unacceptable
recursive computation costs. This can be viewed as a combi-
nation of first-order DP and sub-optimal attention constrained
by in- and out-degree. In contrast, ADPA follows a decoupled
design shown in Sec. IV-A principle, maximizing computational
efficiency while enjoying superior predictive performance.

V. EXPERIMENTS

In this section, we present a comprehensive evaluation of
our proposed graph-based data engineering framework AMUD
and digraph learning paradigm ADPA. We first introduce 16
graph benchmark datasets commonly used in graph learning,
including homophily and heterophily which have been generally
recognized by previous studies. We then offer detailed descrip-
tions of baselines, including state-of-the-art directed GNNs and
undirected GNNs designed for homophily and heterophily. We
also present detailed settings for replicating our experimental
results. After that, we aim to address the following questions:
Q1: Does the modeling guidance of directed topology provided
by AMUD prove to be effective? Q2: Can ADPA achieve
better predictive performance than state-of-the-art baselines
under both undirected and directed scenarios? Q3: If ADPA is
effective, what contributes to its performance gain? Q4: How
does ADPA perform under the sparse settings for digraphs,
such as low label/edge rate and missing features?

A. Experimental Setup

Datasets. In this section, we evaluate the performance of
AMUD and ADPA on 16 digraph/graph benchmark datasets,
considering both homophily and heterophily, as generally
acknowledged by previous studies [51], [60], [61]. The majority
of these datasets consist of natural directed graphs, with the
exception of PubMed. For homophily, we perform experiments
on 4 citation networks (CoraML, CiteSeer, PubMed, ogbn-
arxiv) [82]–[84], crowd-sourcing dataset (Toloklers), web-link
dataset (WikiCS) [85], and co-purchase dataset (Amazon-
computers) [85]. Regarding heterophily, we conduct exper-
iments on three web-page networks (Texas, Cornell, and
Wisconsin from the WebKB datasets) [52], two updated
wiki-page networks (Chameleon and Squirrel) [61], movie
network (Actor) [52], syntax network (Roman-empire) [61],
e-commerce network (Amazon-rating) [61], and social network
(Genius) [51]. For more statistical information, please refer to
Table II. Since AMUD is tailored for directed scenarios, there
is no need to report the score for naturally undirected PubMed.



TABLE II: The statistical information of the experimental datasets, E.Homo and Adj.Homo are edge and adjusted homophily in Sec. II-B.

Datasets #Nodes #Edges #Features #Classes #Train/Val/Test #E.Homo #Adj.Homo #AMUD-Score Description

CoraML 2,995 8,416 2,879 7 140/500/2,355 0.792 0.784 0.380(U-) citation network
CiteSeer 3,312 4,715 3,703 6 120/500/2,692 0.739 0.726 0.269(U-) citation network
PubMed 19,717 88,648 500 3 60/500/1,000 0.802 0.782 - citation network
Tolokers 11,758 519,000 10 2 50%/25%/25% 0.595 0.530 0.405(U-) crowd-sourcing network
WikiCS 11,701 290,519 300 10 580/1769/5847 0.689 0.674 0.392(U-) web-link network

Amazon-computers 13,752 287,209 767 10 200/300/12,881 0.786 0.769 0.314(U-) co-purchase network
ogbn-arxiv 169,343 2,315,598 128 40 91k/30k/48k 0.655 0.641 0.469(U-) citation network

Genius 421,961 984,979 12 2 50%/25%/25% 0.618 0.558 0.705(D-) social network

Texas 183 279 1,703 5 48%/32%/20% 0.061 -0.014 0.814(D-) web-page network
Cornell 183 298 1,703 5 48%/32%/20% 0.122 0.026 0.712(D-) web-page network

Wisconsin 251 450 1,703 5 48%/32%/20% 0.178 0.110 0.685(D-) web-page network
Chameleon 890 13,584 2,325 5 48%/32%/20% 0.245 0.203 0.657(D-) wiki-page network

Squirrel 2,223 65,718 2,089 5 48%/32%/20% 0.216 0.173 0.693(D-) wiki-page network
Actor 7,600 26,659 932 5 48%/32%/20% 0.217 0.172 0.356(U-) actor network

Roman-empire 22,662 32,927 300 18 50%/25%/25% 0.047 0.025 0.642(D-) article syntax network
Amazon-rating 24,492 93,050 300 5 50%/25%/25% 0.380 0.334 0.395(U-) rating network

Baselines. To achieve a comprehensive comparison, we employ
(1) undirected spatial GCN [40],GCNII [14], LINKX [51],
GloGNN [34], and AEROGNN [35]; (2) undirected spectral
SGC [74], GRAND [86], GPR-GNN [50], BerNet [31], and
JacobiConv [32]; (3) directed spatial DGCN [63], NSTE [65],
DIMPA [64], DirGNN [37], and A2DUG [38]. (4) directed
spectral DiGCN [66] and MagNet [67]. For dataset split, we
are aligned with previous studies [62], [67], [82]. In order
to alleviate the influence of randomness, we repeat each
experiment 10 times to represent the unbiased performance.
To ensure fairness, we report the performance of feeding the
undirected transformation (U-) of digraphs into the undirected
GNNs. Regarding directed GNNs, we default to reporting
prediction accuracy on directed inputs (D-). Given the numerous
baselines, we strive to diversify their usage in subsequent
experiments, ensuring comprehensive comparisons without
complex charts and improving the readability of the results.
Hyper-parameters. The hyperparameters are set based on
the original paper if available. Otherwise, we perform an
automatic hyperparameter search via the Optuna [87]. For
our proposed ADPA, the steps of feature propagation and MLP
layers are explored within the ranges of 1 to 5. We set the
hidden dimension to 64 and explore the optimal convolution
kernel coefficient within the ranges of 0 to 1.
Environment. To ensure reproducibility, we provide the
hardware settings, including a machine with Intel(R) Xeon(R)
Gold 6230R CPU 2.10GHz, and NVIDIA GeForce RTX 3090
with 24GB memory and CUDA 11.8. The operating system is
Ubuntu 18.04.6 with 216GB memory.

B. AMUD Guidance

To answer Q1, we report the experimental results on
AMUndirected (Score < 0.5) and AMDirected (Score > 0.5)
in Table III and Table IV, where Rank represents the average
ranking of prediction accuracy. The statistics of these datasets
adhere to widely recognized conclusions measuring topological
properties from prior studies (homophilous measures) and
the key insights mentioned in Sec. I and Sec. III: Intuitively,
undirected and directed topological modeling are respectively
applicable to homophily and heterophily as reflected in edge

TABLE III: Performance in homophilous (Score < 0.5) datasets.

Model CoraML CiteSeer PubMed Tolokers WikiCS Amazon
Computers Rank

GCN 84.2±0.5 65.3±0.5 79.2±0.4 79.0±0.5 77.5±0.3 78.4±0.8 6.8
SGC 83.8±0.2 62.8±0.3 78.6±0.2 78.8±0.2 76.4±0.2 77.3±0.4 9.7

GCNII 84.5±0.6 65.1±0.4 79.4±0.3 79.2±0.4 77.8±0.3 78.6±0.7 5.8
GRAND 83.9±0.4 63.8±0.5 79.0±0.4 78.7±0.3 77.2±0.4 78.5±0.6 7.9
LINKX 83.9±0.3 63.3±0.4 77.6±0.5 78.0±0.6 77.2±0.4 77.9±0.7 9.2
BerNet 83.4±0.4 64.5±0.6 78.4±0.5 77.6±0.4 77.4±0.8 80.1±0.9 5.4

JacobiConv 84.1±0.7 64.8±0.9 79.6±0.3 78.3±0.4 78.0±0.5 79.3±1.0 3.7
GPRGNN 84.7±0.7 64.7±0.7 79.3±0.4 79.2±0.3 77.4±0.6 78.5±1.2 8.3
GloGNN 84.4±0.8 63.5±1.0 78.8±0.6 78.5±0.5 78.3±0.2 79.7±1.0 5.4

AERO-GNN 83.9±0.8 63.0±0.6 79.5±0.6 78.9±0.4 78.0±0.4 79.5±0.9 3.6

DGCN 83.1±1.0 63.2±0.8 77.9±0.4 77.8±0.4 76.6±0.4 77.4±0.4 14.2
DiGCN 83.5±0.6 64.7±0.6 78.4±0.4 78.3±0.3 77.2±0.3 78.1±0.7 12.4
MagNet 84.4±0.6 63.8±0.4 78.6±0.6 77.8±0.2 76.0±0.6 78.3±0.3 7.8
NSTE 84.0±0.3 64.9±0.7 77.8±0.7 77.4±0.4 76.2±0.5 77.8±0.8 10.3

DIMPA 83.6±0.5 64.8±0.9 78.0±0.4 78.8±0.2 76.3±0.3 78.0±0.5 10.7
DirGNN 83.8±0.9 64.2±0.6 78.5±0.9 78.6±0.3 77.5±0.4 78.3±0.4 13.7
A2DUG 83.7±1.0 64.8±0.8 78.8±0.8 78.0±0.9 76.8±0.7 77.5±0.8 12.3
ADPA 84.5±0.6 66.0±0.4 80.2±0.4 80.7±0.4 79.4±0.5 80.9±0.4 1.2

TABLE IV: Performance in heterophilous (Score > 0.5) datasets.

Model Texas Cornell Wisconsin Chameleon Squirrel Roman
Empire Rank

GCN 69.6±3.0 60.3±4.2 65.6±2.8 41.9±1.1 34.6±0.9 78.9±0.3 13.2
SGC 64.3±1.2 55.6±1.0 54.5±0.8 36.9±0.1 38.1±0.1 54.2±0.1 15.9

GCNII 69.2±3.1 60.9±3.9 64.9±3.4 42.2±0.9 34.2±0.8 79.4±0.2 13
GRAND 65.8±2.8 58.4±3.8 65.2±2.9 40.7±1.6 33.1±1.3 77.8±0.4 14.7
LINKX 77.0±2.9 76.8±5.2 73.7±4.1 38.9±2.3 39.8±1.2 77.5±0.6 13.3
BerNet 78.4±2.4 78.5±2.3 78.6±1.9 38.6±1.8 37.9±0.8 77.8±0.5 10.7

JacobiConv 76.8±3.6 79.0±4.4 77.5±2.6 40.2±2.4 37.4±0.9 76.3±0.2 12.3
GPRGNN 77.5±3.4 77.9±3.1 76.3±3.9 41.3±1.5 37.0±0.9 78.5±0.4 11.7
GloGNN 82.2±3.1 79.6±3.0 78.0±2.2 40.2±2.6 41.3±1.2 78.2±0.3 7.7

AERO-GNN 80.4±2.7 80.4±2.8 78.6±3.6 41.0±2.9 41.8±1.1 76.8±0.3 7

DGCN 75.8±3.5 77.9±3.1 76.9±1.4 42.3±2.3 40.6±1.0 80.0±0.7 10.3
DiGCN 79.5±3.2 77.8±4.9 77.2±2.2 43.4±1.8 42.0±1.7 81.3±0.4 7.9
MagNet 80.5±2.1 79.4±3.5 78.4±2.6 44.5±1.1 42.7±1.5 81.9±0.3 3.7
NSTE 78.4±3.0 78.6±2.3 77.6±3.8 42.2±2.6 41.9±0.9 81.2±0.4 5.3

DIMPA 79.5±2.0 79.3±3.1 78.4±3.1 43.8±1.6 41.2±1.0 79.8±0.2 4.7
DirGNN 81.4±2.4 80.0±3.6 79.6±3.8 44.6±1.7 42.5±0.8 81.8±0.3 3.9
A2DUG 80.5±3.9 80.5±4.3 78.2±4.6 43.8±2.8 42.8±1.1 81.3±0.5 6.3
ADPA 83.8±2.7 82.9±3.0 81.6±3.5 46.2±1.3 45.2±1.3 84.3±0.3 1

and adjusted homophily shown in Table II. However, AMUD
identifies three abnormal cases: Genius, Actor, and Amazon-
rating. Despite their being considered representative benchmark
datasets, AMUD provides starkly opposite modeling guidance
by quantifying the correlation between directed topology and
nodes. To emphasize this phenomenon, we separately report
the experimental results in Table V with a thorough analysis.



TABLE V: Improvement from the AMUD (U- or D-).

Model-1 Model-2 Actor-1 Actor-2 Rating-1 Rating-2 ⇒

GCN Jacobi 37.7±0.5 37.8±0.4 46.8±0.4 47.1±0.5 Undir
LINKX GloGNN 37.4±0.5 37.9±0.8 46.7±0.3 46.7±0.5 Undir
BerNet AERO 38.1±0.7 38.2±0.6 46.5±0.4 46.9±0.6 Undir

Model U-A D-A ⇑ U-R D-R ⇑

MagNet 37.2±0.9 35.5±0.8 4.8% 46.5±0.5 44.4±0.5 4.3%
DIMPA 38.0±0.4 36.3±0.8 3.5% 46.3±0.4 44.7±0.5 4.5%
DirGNN 38.2±0.3 35.9±0.4 5.6% 46.5±0.5 44.1±0.4 6.7%
ADPA 39.7±0.7 38.8±0.3 1.7% 49.0±0.3 48.2±0.4 2.3%

Model-1 Model-2 arxiv-1 arxiv-2 Genius-1 Genius-2 ⇒

GCN Jacobi 71.9±0.2 72.6±0.3 88.4±0.4 89.6±0.5 Undir
LINKX GloGNN 71.5±0.4 72.5±0.3 89.2±0.3 89.2±0.4 Undir
BerNet AERO 72.0±0.3 72.4±0.4 88.9±0.3 89.1±0.6 Undir

Model U-a D-a ⇑ U-G D-G ⇑

MagNet 72.7±0.3 70.4±0.3 3.3% 88.7±0.5 91.8±0.4 3.5%
DIMPA 73.2±0.2 70.0±0.3 4.2% 88.4±0.5 91.3±0.3 3.4%
DirGNN 73.0±0.3 70.5±0.4 3.5% 89.2±0.6 92.0±0.5 3.1%
ADPA 73.8±0.3 73.0±0.3 1.2% 91.7±0.4 92.8±0.3 1.3%

Perspective 1. To begin with, we validate the effectiveness
of the proposed workflow shown in Fig. 1: For AMUndirected,
although it can be handled by the directed GNN, we recom-
mend utilizing existing reasonable undirected GNN. As for
AMDirected, they can only be fed into directed GNNs. As
the average Rank list depicted in Fig. 1, we observe that
undirected GNNs tend to outperform directed GNNs when
Score < 0.5, whereas directed GNNs generally excel over
undirected GNNs when Score > 0.5. For instance, in Table III,
the Rank of undirected BerNet is 5.4 is much higher than
directed Dir-GNN (Rank 13.7). As presented in Table IV, the
rank of BerNet (10.7) is much lower than Dir-GNN (3.9) in
dealing with heterophilous dataset, which also validates the
effectiveness of our mechanism. Furthermore, the average Rank
of directed and undirected methods also substantiates this point.
Meanwhile, although ADPA does not consistently achieve the
best performance in Table III, we observe it to be a competitive
method. This supports our claims in Sec. II-A: ADPA is a
feasible choice for both AMUndirected and AMDirected.

Perspective 2. After demonstrating the validity of our pro-
posal in Fig. 1, we further investigate whether AMUD can break
the entanglement of homophily and heterophily by examining
four specific datasets. During our investigation of applying
AMUD, we observe that not all heterophilous (homophilous)
datasets (measured by the edge and adjusted homophily) can
achieve high (low) AMUD scores (threshold is 0.5). Specif-
ically, Actor and Amazon-rating (Genius) are conventionally
regarded as heterophilous (homophilous) datasets. Nevertheless,
the AMUD scores of Actor and Amazon-rating (Genius) shown
in Table II indicate that they should be modeled as undirected
(directed) graphs. Furthermore, we consider the ogbn-arxiv
dataset for comprehensive experimental results. Building upon
this, we present the pertinent experimental results in Table V to

substantiate our claims. We attribute this to AMUD’s success
in identifying the correlation between directed edges and node
profiles in these four datasets. Remarkably, compared to other
directed baselines, performing undirected transformations on
the input does not significantly impact ADPA. This indirectly
validates the robustness of ADPA in facing both undirected and
directed scenarios; it is highly adaptive to numerous deployment
needs while maintaining excellent performance.

C. Performance Comparison

To answer Q2, we note that ADPA consistently exhibits
superior performance compared to all baselines in Table III
and Table IV. For instance, ADPA exhibits a significant
lead over the state-of-the-art MagNet on the Roman-empire
(Score = 0.642) by around 2.9%. Moreover, ADPA achieves
an improvement of approximately 1.5% compared to the highly
competitive JacobiConv on the Citeseer (Score = 0.269), even
though undirected transformation has been applied during
training. These consistent results confirm the superiority of
ADPA over other state-of-the-art baselines on intricate topology,
attributable to the two pivotal modules: directed patterns
guided feature propagation and two hierarchical node-adaptive
attention mechanisms. By adaptively aggregating multi-scale
messages from various k-order neighbors, ADPA achieves
effective multi-granularity representation fusion, which results
in remarkable improvements in predictive performance.

Building upon the above results, we visualize the training
process in Fig. 5. Experimental results demonstrate that ADPA
consistently outperforms other methods throughout the entire
training process and exhibits more stable convergence. For
instance, in the Toloker and WikiCS datasets with Score < 0.5,
ADPA reaches close-to-optimal performance around the 50th
epoch, and the training curves indicate stability in subsequent
convergence. Similarly, the same conclusion applies to the
Empire dataset with Score > 0.5, highlighting the superiority
of ADPA. Notably, due to the relatively small size of the
Texas, Cornell, and Wisconsin datasets, they consistently
result in higher variance in unbiased performance reports in
Table IV. This is also reflected in the visualization results,
where their convergence curves often exhibit drastic fluctuations.
Consequently, these datasets lead to significant performance
variations in models that cannot maintain stability during
training, making them challenging to deploy in real-world
scenarios, such as GPRGNN and NSTE. In contrast, ADPA
demonstrates satisfactory robustness.

D. Ablation Study and Sensitivity Analysis

To answer Q3, we focus on two critical modules introduced
in our proposed ADPA: (1) DP guided feature propagation;
and (2) two hierarchical node-wise attention mechanisms. The
motivation and technical details of defining DP operators and
utilizing them for feature propagation to encode deep structural
information can be found in Sec. III and Sec. IV-B. Notably, in
the aforementioned process, we employ k-order DP operators at
each propagation step to capture multi-scale directed topology
(Level 1), thereby obtaining multi-granularity structural insights
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Fig. 5: Convergence curves on the AMUndirected (upper) and AMDirected (lower).

(a) CoraML (b) CiteSeer (e) Chameleon (f) Squirrel(c) Actor (d) Cornell
Fig. 6: AMUndirected (Left three) and AMDirected (Right three) performance under different propagation steps K.

TABLE VI: ADPA performance under different k-order DP operators.

Dataset 1-order 2-order 3-order 4-order 5-order

CoraML 79.63±0.48 84.52±0.64 82.94±0.54 82.17±0.51 80.81±0.70
CiteSeer 62.72±0.45 66.03±0.38 64.11±0.25 63.57±0.52 63.89±0.46

Actor 37.34±0.50 38.58±0.64 39.65±0.72 38.53±0.66 37.94±0.78
Tolokers 80.22±0.16 80.72±0.37 78.60±0.32 78.92±0.42 77.68±0.49

Amazon Rating 45.47±0.99 48.42±0.45 48.96±0.30 47.84±0.56 48.14±0.49
Computers 79.68±0.19 80.94±0.42 79.25±0.60 78.51±0.44 77.19±0.85

Texas 81.62±2.23 83.78±2.71 82.54±2.38 81.06±2.53 80.54±2.96
Cornell 74.68±3.28 82.92±3.04 76.93±2.40 79.45±2.51 78.32±1.72

Wisconsin 78.04±2.56 81.57±3.51 75.49±4.47 74.51±4.16 74.12±5.08
Chameleon 44.02±1.77 46.19±1.34 41.96±0.59 43.24±0.73 44.03±1.75

Squirrel 41.11±1.36 45.22±1.28 43.96±1.22 43.50±1.65 42.88±1.03
Roman Empire 81.47±0.28 83.66±0.32 84.29±0.33 82.32±0.29 82.18±0.47

TABLE VII: Ablation study on two node-wise attention mechanisms.

Model CoraML CiteSeer Chameleon Squirrel

w/o DP Attention 81.36±0.55 62.75±0.28 44.32±1.83 43.57±0.84
ADPA-DP-Original 84.52±0.64 66.03±0.38 45.81±1.22 44.76±0.93

ADPA-DP-Gate 82.37±0.78 65.27±0.32 45.87±1.46 44.96±1.12
ADPA-DP-Recursive 83.40±0.80 64.86±0.47 46.06±1.30 45.22±1.28

ADPA-DP-JK 83.86±0.55 65.14±0.30 46.19±1.34 45.03±1.16
w/o Hop Attention 80.84±0.42 63.18±0.26 43.80±1.59 43.36±0.79

ADPA 84.52±0.64 66.03±0.38 46.19±1.34 45.22±1.28

after completing the K-step propagation (Level 2). Building
upon this foundation, we propose two hierarchical node-wise
attention mechanisms: DP attention for Level 1 and Hop
attention for Level 2. The relevant technical details can be found
in Sec. IV-C. The purpose of this strategy is to achieve efficient
node representation fusion through an end-to-end learnable
mechanism, improving predictive performance.

k-order DPs and K-step feature propagation. As depicted in
Table VI, we present the impact of various k-order DP operators
on ADPA. Notably, ADPA with 2-order DP operators attains the
optimal performance across most datasets, including CoraML,
CiteSeer, Chameleon, Squirrel, and others. Although 3-order
DP operators enhance performance on specific datasets, such
as Actor and Amazon Rating, the utilization of higher-order
DP operators does not yield any positive impact, instead, it
adversely affects the model’s performance. We attribute this
phenomenon to over-fitting issues, which means that higher-
order DP operators not only produce redundant structural
encoding but also require more learnable weights for accurate
prediction. Additionally, we observe that ADPA with 1-order
DP operators exhibits weak performance across the most of
datasets. This can be attributed to the limited expressive power
of 1-order DP operators, which only encompass 1-hop in- or out-
neighbors of a node and consequently provide less information
compared to 2-order or higher DP operators.

For an in-depth analysis, we illustrate the impact of various
propagation steps on models (i.e., SGC, GPRGNN, NSTE,
DIMPA, and our proposed ADPA) across AMUndirected
datasets (CoraML, CiteSeer, and Actor) and AMDirected
datasets (Cornell, Chameleon, and Squirrel) in Fig. 6. We can
conclude that most GNNs exhibit improved performance as
the propagation step K increases from 1 to 3. However, after
reaching the boundary point, introducing more propagation
steps has a detrimental effect on the performance of most
models, primarily due to the over-smoothing issues. To tackle
this unique challenge, our proposed node-wise hop attention
proves effective by allowing each node to adaptively aggregate
propagated features according to its specific requirements.
Consequently, ADPA consistently outperforms other models,
even with an increased number of propagation steps.
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Fig. 7: Performance on CiteSeer (upper) and Squirrel (lower) under
different levels of sparsity.

Node-wise DP and hop attention. The ablation experiment for
two hierarchical node-wise attention mechanisms is depicted in
Table VII, where ADPA-DP-Original represents the attention
mechanism employed in Eq. (10), and Gate, Recursive, and JK
correspond to the attention mechanisms proposed in [80], [15],
and [42], respectively. Notably, node-wise DP attention plays
a crucial role in the predictive performance improvement of
ADPA, contributing to an average accuracy gain of over 2%.
As discussed in Sec. III-C, as different DP operators provide
distinct structural insights for various semantic information,
selectively aggregating features propagated by these operators is
essential. Furthermore, Table VII reveals that the original atten-
tion mechanism used in Eq. (10) achieves optimal performance
in AMUndirected datasets (CoraML and CiteSeer), while Recur-
sive and JK attention attain the best performance in Chameleon
and Squirrel of AMDirected datasets. This discrepancy can be
attributed to the homophily and heterophily characteristics of
these datasets. For instance, AMDirected datasets demand more
learnable parameters attained in Recursive and JK attention to
capture their intricate topological relationships.

Meanwhile, node-wise hop attention also significantly con-
tributes to the performance improvement, yielding an average
gain of over 3%. In contrast to JK attention, our proposed
node-wise hop attention in Eq. (11) aggregates features from
different DP operators separately. As a result, it possesses a
more semantically diverse and multi-scale reception field than
JK attention, leading to superior performance in predictions.

E. Performance on Sparse Settings

To answer Q4, we provide experimental results in Fig. 7.
Given the practical challenges in the real world, a notable
concern is the inherent sparsity, particularly in digraphs with
abundant directed information from intricate applications. This
is because (1) compared to benchmark datasets used in
academic research, we struggle to construct high-quality node
features in the industry; (2) the precise description of topology
by directed edges reduces redundant structural information;
(3) in the semi-supervised node classification paradigm, where
only a small proportion of nodes are labeled, label sparsity
becomes a realistic issue. The aforementioned features, edge,
and label sparsity pose unique challenges for existing DiGNNs.

For feature sparsity, we assume that the feature representation
of unlabeled nodes is partially missing. In this case, it
is necessary to obtain additional feature information from
neighbors through appropriate propagation. Fig. 7 shows that
A2DUG may suffer from limited RF due to the lack of utilizing
digraph structure for feature propagation, which leads to sub-
optimal performance. Notably, this similar approach includes
LINK, which is not presented in Fig. 7 to avoid complex charts
and make results more reader-friendly. These methods directly
fed digraph topology to MLP to encode structural information
and combine it with node feature embeddings to avoid
exploring intricate relationships in digraphs. While providing a
straightforward and efficient solution, these methods often
suffer from degraded predictive performance because they
overlook explicit interactions between nodes. Additionally, they
have a notable drawback—they cannot address the issue of
feature sparsity. However, they exhibit unexpected benefits in
the context of edge sparsity. Moreover, methods exemplified by
JacobiConv heavily rely on node features to conduct spectral
analysis for discovering connection patterns between node
pairs. This dependence results in unacceptable performance
degradation in sparse feature settings. On the contrary, ADPA
and DirGNN can customize the number of propagation steps
to achieve a larger RF, thus alleviating the problem of feature
sparsity, which is also applicable to edge and label-sparse
scenarios. To simulate edge sparsity, we randomly remove a
fixed percentage of edges from the original digraph, providing
a realistic challenge. For label sparsity, we change the number
of labeled samples for each class. Experimental results from
Fig. 7 show that our proposed ADPA, as compared to baselines,
is more robust to the sparsity scenarios.

VI. CONCLUSION

In this paper, we firstly review recent developments in
graph learning based on the semi-supervised node classification
paradigm. Inspired by practical demands of realistic appli-
cations, we emphasize that the intricate topology of graphs
database places existing GNNs in a dilemma in exploring
the optimal node representation due to the entanglement of
homophily and heterophily. To solve this issue, we propose
AMUD to provide a new perspective of data engineering
by utilizing the directed information, modeling the intricate
topology to break such an entanglement. Specifically, AMUD
quantifies the correlation between node profiles and topology
and guides whether to retain the inherent directed edges
to maximize the benefits of subsequent graph learning as
shown in Fig. 1. Additionally, we propose a new digraph
learning paradigm ADPA, which explores the optimal node
representation in directed scenarios by adaptively mining
the suitable DPs and employing two hierarchical node-wise
attention mechanisms. ADPA exhibits statisfying results in both
digraphs and undirected graphs. Promising future directions
are to explore a more effective propagation mechanism that
can achieve fine-grained exploration of complex topology and
a more efficient execution of multi-scale information fusion
while maintaining performance.
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